Climate-informed models benefit hindcasting but present
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Cheryl Barnes, she|her
University of Washington & NOAA Fisheries

University of Washington
Tim Essington

Alaska Fisheries Science Center, NOAA
Jim Thorson

Ned Laman

Kirstin Holsman

Kerim Aydin

Alaska Regional Office, NOAA
Jodi Pirtle

Fisheries and Oceans Canada o it ’
: L XA
Chris Rooper :



Species Distribution Models (SDMs)

Objective

— distributions and densities as function
of the environment

Applications
— species-habitat associations
— ecological inferences >
e.g., predation, competition
— fisheries management
e.g., stock assessment, EFH

Conventional SDMs

- static approach
i.e., spatial variation, long-term mean conditions

Climate-informed SDMs 45
- dynamic approach }
e.qg., spatial, temporal, spatiotemporal variation ”
year-specific conditions R
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Research Questions

How does model complexity affect our ability to:
« boftom trawl survey data
« generadlized additive models (GAMs)

hindcast species-habitat associations?
« R2, % Deviance Explained, UBRE/GCV

forecast species responses to climate change?
« retfrospective skill testing (sensu Thorson 2019)

o @ o
-------
e

Fit Forecast

O
pr—
-9 ooooooooooo _o
v O

o

g |

O
kS . O
£ : 2
O de ® 2y ‘e
C ) o e,
> .
o) $ : i. $

Resource Assessment and Conservation Engineering Division

1982-1999 2000 -2018 Observed Alaska Fisheries Science Center, NOAA



hindcasting species-habitat associations

T static models

historical data

dynamic models
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the physical, biological, and chemical characteristics
necessary for a particular species to survive, grow, and reproduce.
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hindcasting species-habitat associations
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hindcasting species-habitat associations
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forecasting species responses to climate change

H static models

historical data

dynamic models




forecasting species responses to climate change
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forecasting species responses to climate change
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Climate-informed models benefit hindcasting but present
challenges when forecasting species-habitat associations

Take-home messages:

- dynamic SDMs best suited for hindcasting
- no improvement or decrease in near-term forecast skill

Recommendations for SDM users:
- analyses based on prediction task

- hindcasting
- complex dynamic models
- spatial, temporal, and spatiotemporal variation >
- static and dynamic covariates -
- forecasting
- retrospective skill testing for model selection
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- exercise caution when forecasting based on temperature

Where do we go from here?

- continue advancing development of dynamic SDMs
e.g., incrementally adding non-environmental variables

- develop absolute measures of forecast skill species interactions
dynamic forecast skill
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